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We study the phase-ordering kinetics following a quench to a final temperature Tf of the one-dimensional
p-state clock model. We show the existence of a critical value pc=4, where the properties of the dynamics
change. At Tf =0, for p� pc the dynamics is analogous to that of the kinetic Ising model, characterized by
Brownian motion and annihilation of interfaces. Dynamical scaling is obeyed with the same dynamical expo-
nents and scaling functions of the Ising model. For p� pc, instead, the dynamics is dominated by a texture
mechanism analogous to the one-dimensional XY model and dynamical scaling is violated. During the phase-
ordering process at Tf �0, before equilibration occurs, a crossover between an early XY-like regime and a late
Ising-like dynamics is observed for p� pc.
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I. INTRODUCTION

After quenching a ferromagnetic system to a low-
temperature phase, relaxation towards the new equilibrium
state is realized by a progressive phase ordering �1�. The
specific mechanisms involved in the coarsening phenomenon
depend on the presence and on the nature of topological de-
fects seeded by the disordered initial configuration which, in
turn, are determined by the space dimensionality d and the
number of components, N, of the order parameter. For N
�d defects are spatially extended; in this case coarsening is
driven by reducing the typical curvature of the defect core,
removal of sharp features, and shrinking of domain bubbles
or vortex loops. Systems with N=d are characterized by the
presence of stable localized topological defects, and the or-
dering process occurs by mutual defect-antidefect annihila-
tion. This is the case of the Ising chain quenched to a final
temperature Tf =0, where up and down domains are sepa-
rated by pointlike interfaces performing Brownian walks.
When N=d+1, such as in the one-dimensional XY model,
the kinetics is characterized by textures, spatially extended
defects without a core, along which the order parameter ro-
tates by 2�. Growth of the typical size of textures is a rel-
evant mechanism at work in these systems. Finally, for N
�d+1 topological defects are unstable and the dynamics is
solely driven by the reduction of the excess energy related to
the smooth rotations of the order parameter.

In any case, the development of order is associated with
the growth of one or more characteristic lengths, with laws
that, besides the specific mechanisms discussed above, de-
pend on the conservation laws of the dynamics.

Generally, the late stage is characterized by dynamical
scaling. This implies that a single characteristic length L�t�
can be associated with the development of order in such a
way that configurations of the system are statistically inde-

pendent of time when lengths are measured in units of L�t�.
The characteristic length usually has a power-law growth
L�t�� t1/z. In systems with a nonconserved order parameter
one generally finds z=2. In particular, this value is provided
by the exact solution of the kinetic Ising chain �2� quenched
to zero temperature.

However, there are cases where dynamical scaling is vio-
lated, notably the XY model in d=1,2. In d=1 this is related
�3� to the presence of two lengths Lw�t� and Lc�t�, associated
with the texture length and with the texture-antitexture dis-
tance, growing with different exponents z=4 and z=2, re-
spectively.

In this article, we investigate the interplay between two
coarsening mechanisms—pointlike defect annihilation and
texture growth—in the phase-ordering kinetics of the one-
dimensional �1D� p-state clock model. This spin system re-
duces to the Ising model for p=2 and to the XY model for
p=�. We study how the model with generic p interpolates
between these limiting cases which, as discussed above, be-
have in a radically different way. In doing that, we uncover
the existence of a critical value pc=4, where the properties of
the dynamics change abruptly. For p� pc the dynamics at
Tf =0 is characterized by Brownian motion and annihilation
of interfaces between domains, as in the Ising model. One
has dynamical scaling with the same dynamical exponents
and, interestingly, the same scaling functions of the Ising
model. For p� pc, instead, the dynamics is dominated by a
texture mechanism analogous to the case with p=�, and dy-
namical scaling is violated.

In d=1 there is no possibility of ergodicity breaking ex-
cept at T=0. At any finite temperature the equilibrium state
is disordered with a vanishing magnetization and a coher-
ence length ��T� that diverges in the T→0 limit. If the sys-
tem is quenched to a sufficiently low temperature, one has a
coarsening phenomenon in a preasymptotic transient until
the growing length associated with the development of order
becomes comparable with ��Tf�. Since ��Tf� diverges as Tf

→0, the phase-ordering stage can be rather long. In this
regime we show that activated processes restore, after a char-
acteristic time 	p

cross�Tf�, the Ising behavior also in the cases
with p� pc.
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This paper is organized as follows: In Sec. II we introduce
the model and define the observable quantities that will be
considered. In Sec. III we present the outcome of numerical
simulations of the model with different p. In particular,
quenches to Tf =0 or to Tf �0 will be discussed in Secs. III A
and III B, respectively. Here we shed light on the crossover
between the Ising and the XY universality class and provide
an argument explaining its microscopic origin. A summary
and the conclusions are contained in Sec. IV.

II. MODEL AND OBSERVABLES

The p-state clock model in one dimension is defined by
the Hamiltonian

H�
� = − J�
i=1

N


� i · 
� i+1 = − J�
i=1

N

cos��i − �i+1� , �1�

where 
� i is a two-component unit-vector spin pointing along
one of the directions

�i =
2�

p
ni, �2�

with ni� �1,2 , . . . , p�, i=1, . . . ,N are the sites of the lattice,
and we assume periodic boundary conditions �N+1=�1. This
spin system is equivalent to the Ising model for p=2 and to
the XY model for p→�. In d=1 the system is ergodic except
at T=0. At any finite temperature the equilibrium state is
disordered with a vanishing magnetization and a coherence
length ��T� that diverges in the T→0 limit.

We consider a system initially prepared in a high-
temperature uncorrelated state and then quenched, at time t
=0, to a lower final temperature Tf. The dynamics is charac-
terized by the ordering of the system over a characteristic
length growing in time until, at time 	p

eq�Tf�, it becomes com-
parable to ��Tf�. At this point the final equilibrium state at Tf

is entered. Quenching to Tf =0, since ��0�=�, one has
	p

eq�Tf�=�; therefore an infinite system never reaches equi-
librium and the phase-ordering kinetics continues indefi-
nitely. If the system is quenched to a sufficiently low tem-
perature, since ��Tf� is very large, the same behavior, as for
Tf =0, can be observed over the time window t�	p

eq�Tf�.
The power-law growth of the characteristic size of or-

dered regions depends on the specific mechanisms at work in
the kinetic process. In the 1D Ising model with nonconserved
order parameter—i.e., single-spin-flip dynamics—ordering is
determined by the Brownian motion of the interfaces be-
tween up and down domains, which annihilate upon meeting.
This leads to

L�t� � t1/z, �3�

with z=2. The same value is also expected �4� for p�4.
The situation is different in the XY model in d=1. Here

the order parameter is a vector which can gradually rotate
with a low energy cost. A smooth 2� rotation of the phase �
is called a texture when the rotation is clockwise or antitex-
ture when it is counterclockwise. The length over which this
phase winding occurs will be denoted by Lw�t�. After a

quench from a disordered state textures and antitextures are
formed with equal probability. Then, there are points where
the rotation of � changes direction and the phase decoheres.
We denote with Lc�t� the characteristic length over which the
phase remains coherent. It was shown �3� that Lw�t� and Lc�t�
grow with a power law �3� but with different exponents.
Specifically one has z=4 for Lw�t� and z=2 for Lc�t�. The
existence of these two lengths is at the heart of the scaling
violations of the XY model.

Characteristic lengths can be estimated from the knowl-
edge of the two-point equal-time correlation function

G�r,t� = 	
� i�t� · 
� i+r�t�
 , �4�

where 	¯
 means an ensemble average—namely, taken over
different initial conditions and thermal histories. Due to
space homogeneity, G�r , t� does not depend on i. If there is a
single characteristic length in the system, one has dynamical
scaling �1�, which implies

G�r,t� = g�x� , �5�

where x=r /L�t�. In the Ising model one finds �2�

g�x� = erfc�x� , �6�

with L�t�=�2t. For small x one has the Porod linear behavior
1−g�x��x, which is expected for systems with sharp inter-
faces �1�. From Eq. �5� one can extract a quantity LG�t� pro-
portional to L�t� from the condition

G�LG�t�,t� =
1

2
, �7�

namely, as the half-height width of G�r , t�. In the XY model,
G�r , t� still obeys Eq. �5�, with x=r /Lw�t�, Lw�t�
=23/4��t�1/4, and �1�

g�x� = exp�−
x2

�i
 . �8�

Here �i is the correlation length of the initial condition
which, for a quench from a disordered state, is of the order of
the lattice spacing. The Porod law is not obeyed, since in-
stead of sharp interfaces one has smooth textures. Note that
G�r , t� has a scaling form, although dynamical scaling is vio-
lated. Scaling violations can be evidenced by considering
different quantities such as, for instance, the autocorrelation
function

C�t,s� = 	
� i�t� · 
� i�s�
 . �9�

In the Ising model this quantity can be cast in scaling form
�2�

C�t,s� = h�y� , �10�

where y= t /s and

h�y� =
2

�
arcsin� 2

1 + y
. �11�

In the XY model, instead, one finds �3� the stretched expo-
nential behavior
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C�t,s� = exp�−
1

�i
��

s1/2�2�y + 1�1/2 − �2y�1/2 − �2� .

�12�

This expression cannot be cast in a scaling form, as for the
Ising model, revealing the absence of dynamical scaling.

III. NUMERICAL RESULTS

In the following we will present the numerical results.
Setting J=1, for each case considered we simulated a string
of 104 spins with periodic boundary conditions and different
values of p ranging from p=2, corresponding to the Ising
model, to p=�, corresponding to the XY model. We consider
a single-spin-flip dynamics regulated by transition rates

w��
� → �
��� = wp��E

T
� =

2

p

exp�− �E/2T�
exp��E/2T� + exp�− �E/2T�

.

�13�

Here �
� and �
�� are the spin configurations before and after
the move, differing at most by the value of the spin on a
randomly chosen site, �E=H�
��−H�
�, and we have set
the Boltzmann constant to unity. The transition rates �13� are
a generalization of Glauber transition rates to the p-state
spins of the clock model. They reduce to the usual Glauber
transition rates w��
�→ �
���= �1/2��1+tanh�−�E /2T�� for
p=2. The factor 2 / p in Eq. �13� ensures that all spin values
have the same probability 1 / p when �E=0.

An average over 104 realizations is made for each simu-
lation. The statistical errors in the data reported in the figures
are always smaller than the dimension of the symbols or the
thickness of the lines.

A. Quenches to Tf=0

Let us start with quenches to Tf =0 by illustrating the
behavior of the characteristic length LG�t� defined in Eq. �7�.
In Fig. 1 this quantity is plotted against t1/2 �left panel� or

against t1/4 �right panel� for several values of p ranging from
p=2 to p=�.

This figure shows that LG�t� has an asymptotic power-law
growth, as in Eq. �3�, for every value of p. However, the
dynamic exponent z radically changes going from p� pc,
where one has values very well consistent with z=2 �best fits
yield 1/z=0.49±0.01 for p=2,3 ,4�, to p� pc where z=4
is found with good accuracy �we find 1/z
=0.27±0.01,0.27±0.01,0.25±0.01 for p=5,6 ,10�. We re-
call that these are the values found in the Ising model and in
the XY model. The behavior of LG�t�, then, indicates a cross-
over from Ising to XY behavior upon crossing pc=4. We will
see in the following that this is confirmed by the analysis of
other dynamical quantities. Before doing that, however, let
us discuss which is the microscopic mechanism at the basis
of this crossover.

For finite values of 2� p�� we generalize the definition
of a texture as a region of the lattice of length Lw�t� where p
subsequent domains are found, each of average length
Ld�t��Lw�t� / p, such that moving along the lattice the value
of n follows the sequence n= p , p−1, . . . ,1. This is schemati-
cally shown in Fig. 2.

Two developed order-2 mechanisms are possible: A tex-
ture can grow by increasing the number of spins, Ld�t�, on
every step. We anticipate that this process is found to be
relevant for p� pc and leads to the power-law behavior �3� of
Lw�t� with z=4, as in the XY model. This behavior competes
with the tendency to build the largest possible domains, in-
stead of textures. This amounts to replace a texture with a
number ND p of domains each characterized by a single
value of n. However, for p� pc at T=0, once textures are
present, this process is not allowed. In fact, let us consider
the situation of Fig. 2 and the possibility to form, in this
region, a unique domain with, say, n= p �the dotted line in
Fig. 2�. There are several ways to do this. Suppose one starts
by rotating the spins with n=1 to n=2, as shown by the thin
arrow in Fig. 2. After the move the energy would change by
an amount

FIG. 1. �Color online� The characteristic length LG�t� is plotted
against t1/2 �left panel� and t1/4 �right panel�. FIG. 2. �Color online� Schematic representation of a generalized

texture for p=5.
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�Ep = J�2 cos�2�/p� − cos�4�/p� − 1� . �14�

This function is plotted in Fig. 3. Interestingly one has
�Ep�0 or �Ep�0 for p� pc or p� pc, respectively. At Tf
=0 moves with �Ep�0 are forbidden. Therefore, for p
� pc there is no possibility to destroy the textures and form
domains. Other possible moves, such as, for instance, a ro-
tation from n=1 to n=3, correspond to a larger activation
energy and are forbidden as well. Therefore, for p� pc tex-
tures and antitextures are stable against domain formation
and the only ordering mechanism left is their growth and
annihilation, much in the same way as in the XY model,
leading to z=4. Conversely, for p� pc textures are removed
and domains are created whose competition leads to the
Ising-like behavior z=2. As already discussed, in the XY
model the exponent z=4 is associated with the growth of the
size of single textures. In order to check if the same mecha-
nism is at work also in the clock model, in the numerical
simulation we have identified the textures present in the sys-
tem at each time and we have computed their average size
Lw�t�. The results are shown in Fig. 4 for different values of

p� pc, showing that, actually, the size of textures grows as a
power law Lw� t1/z with z quite compatible with z=4 �best
fits yield 1/z=0.29±0.02,0.29±0.02,0.28±0.02,0.23±0.02
for p=5,6 ,10,25, respectively�. This confirms that the ex-
ponent z=4 of the algebraic growth of LG�t� is determined by
the texture mechanism, as in the XY model.

The previous results for LG�t� indicate the presence of a
crossover at p= pc from the Ising to the XY nonequilibrium
universality class. In order to substantiate this conjecture we
have computed other dynamical quantities. The equal-time
correlation function is plotted in Figs. 5–7 against x
=r /LG�t�. In Fig. 5 the cases with p=2,3 ,4 are considered.
According to Eq. �5� for p=2 one should find a collapse of
the curves with different s on a single master curve g�x�
given by Eq. �6�. This is indeed observed in Fig. 5. Accord-
ing to our hypothesis the same behavior should be observed
also for p=3,4, as can be verified in the figure. Moreover,
one also finds that the master curves g�x� are numerically

FIG. 3. The activation energy �Ep needed to destroy textures
�Eq. �14�� is plotted against p.

FIG. 4. �Color online� The average length of textures is plotted
against t1/4.

FIG. 5. �Color online� The correlation function G�r , t� is plotted
against x=r /LG�t� for p=2,3 ,4 at t=1800. The dashed line is the
analytic expression �6�.

FIG. 6. �Color online� Data collapse of the correlation function
G�r , t� plotted against x=r /LG�t� for p=5 �upper panel� and
p=6 �lower panel� at different times �t=190, 245, 315,
405, 520, 665, 855, 1100, 1400, 1800�.
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indistinguishable for different p and they all coincide with
that of Eq. �6�. This result is trivial for p=4, since in this
case the clock model can be mapped exactly on two nonin-
teracting Ising models. The same property could be expected
also for p=3. In fact, by considering G�r , t�, it easy �see the
Appendix� to check that

G�r,t� =
9

2
GP�r,t� −

1

2
, �15�

where GP�r , t� is the single-phase equal-time correlation
function of the three-state Potts model. This quantity was
computed in Ref. �5�, where it was found that

GP�r,t� =
2

9
GI�r,t� +

1

9
, �16�

where GI�r , t� is the equal-time correlation function of the
Ising model. Plugging Eq. �16� into Eq. �15� one finds
G�r , t�=GI�r , t�. The same argument also shows the identity
between the two time correlation functions of the clock
model with p=3 and the Ising model, strongly suggesting the
complete equivalence between these models.

Let us emphasize that this result indicates a stronger simi-
larity among the cases p=2,3 ,4 than a unique nonequilib-
rium universality class would imply, since not only the ex-
ponents are equal but the whole functional form of the
scaling function. This results are in contrast with those of
Ref. �6� where an approximate theory was used to show the
dependence of g�x� on p. However, the approximation used
in Ref. �6� is expected to improve increasing the dimension-
ality d.

The cases with p� pc are shown in Figs. 6 and 7. As
discussed in Sec. II, G�r , t� obeys the scaling form �5� also in
the XY model, although dynamical scaling is violated. Ac-
cording to our conjecture, for p� pc we expect the same
behavior. In Fig. 6 it is shown that, indeed, the curves at
different times collapse when plotted against x=r /LG�t�.
However, differently from the cases p� pc, the masterfunc-
tion g�x� depends on p and converges to the form �8� of the
XY model for p→�, as shown in Fig. 7.

Let us turn to consider the autocorrelation function, which
is plotted in Figs. 8–10 against y= t /s. In Fig. 8 the cases
with p=2,3 ,4 are considered. Here the situation is analo-
gous to that of G�r , t�. For p=2 one should find a collapse of
the curves with different s on a master curve h�y�, Eq. �10�.
This is indeed observed in Fig. 8. The same behavior is ob-
served also for p=3,4. Again, as for G�r , t�, we find that the
master curves h�y� are numerically indistinguishable for dif-
ferent p and they all coincide with that of Eq. �11�. In order
to check if this property is completely general—namely, if
every observable is characterized by the same exponents and
scaling functions for p=2,3 ,4—besides the correlation func-
tions we have also computed the integrated autoresponse
function

��t,s� = �
s

t

dt�R�t,t�� . �17�

Here

FIG. 7. �Color online� The correlation function G�r , t� is plotted
against x=r /LG�t� for different values of p at t=1800.

FIG. 8. �Color online� The autocorrelation function is plotted
against y for p=2,3 ,4. The dashed line is the analytic expression
�11�.

FIG. 9. �Color online� ��t ,s� is plotted against y for p=2,3 ,4.
The dashed line is the analytic expression �20�.
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R�t,t�� = �
�
� �	
i

��t�

�hi

��t��
�

h� i=0

, �18�

�=1,2 being the generic vector components, is the linear
autoresponse function associated with the perturbation

caused by an impulsive magnetic field h� i switched on at time
t�� t. In the Ising model �7�, in the T→0 limit one finds

��t,s� = f�t/s� , �19�

with

f�y� =
1
�2

�1 −
2

�
arcsin �y−1� . �20�

Here we measure the response function using the efficient
method derived in Ref. �8� without applying the perturbation.

The behavior of ��t ,s� is shown in Fig. 9 for the cases
p=2,3 ,4. One finds a collapse of the curves with different s
on a master curve f�y�, as in Eq. �19� for p=2. Also in this
case master curves f�y� for different p are numerically indis-
tinguishable. In conclusion, then, our data for G�r , t�, C�t ,s�,
and ��t ,s� confirm that the cases with p=2,3 ,4 share the
same exponents and scaling functions. Notice that having the
same scaling function both for C�t ,s� and ��t ,s�, the cases
with p� pc also have the same parametric plot of ��t ,s� ver-
sus C�t ,s� �7�.

The situation is radically different for p� pc. We expect
here to see a texture-dominated XY-like dynamics, with vio-
lations of dynamical scaling that can be detected from
C�t ,s�. In fact, this is what one observes in Fig. 10, where
the autocorrelation function is plotted against y. For each
value of p, curves with different values of s do not collapse.
The whole behavior is qualitatively similar to that of the XY
model described by Eq. �12�, which predicts a lowering of
the curves for fixed y as s increases. Quantitatively, as al-
ready observed regarding G�r , t�, the analytic form of the

curves depends on p and is different from that of the XY
model—namely, Eq. �12�. As shown in Fig. 11, Eq. �12� is
gradually approached increasing p.

B. Quenches to Tf�0

When quenches to finite temperatures are considered, as
already discussed in Sec. II, one has a finite equilibration
time 	p

eq�Tf�. In the following we will always discuss the
ordering kinetics preceding the equilibration time—namely,
for t	p

eq�Tf�.
According to our hypothesis, the XY-like behavior ob-

served for p� pc is due to the impossibility to eliminate tex-
tures and form domains, because this would require activated
processes with �Ep�0 given by Eq. �14�. Quenching to a
finite temperature those processes are no longer forbidden
and we expect textures to start being removed after a char-
acteristic time 	p

cross�Tf�. In order to estimate the crossover
time let us consider again the situation of Fig. 3. The acti-
vated process described by the thin arrow, where the spins
with n=1 are rotated to n=2, is a first action towards the
removal of the texture, but the texture has not disappeared
yet. The second action is the rotation of spins from n=2 to
n=3, indicated by a bold arrow in the figure �9�. This re-
quires an energy

�Ep
�2� = J�cos�2�/p� + cos�4�/p� − cos�6�/p� − 1� .

�21�

Then a third action is required, where spins with n=3 are
rotated to n=4, and so on, until, after p−1 steps all the spins
in the region considered have n= p. It is easy to generalize
Eqs. �14� and �21� to the generic mth action:

�Ep
�m� = J�cos�2�/p� + cos�2m�/p� − cos�2�m + 1��/p� − 1� .

�22�

Let us consider �Ep
�2�. This quantity is positive for p�6. For

FIG. 10. �Color online� The autocorrelation function is plotted
against y for p=5 �upper panel� and p=6 �lower panel�.

FIG. 11. �Color online� The autocorrelation function is plotted
against y for s=100 and several values of p.
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p=5,6, therefore, the second action is not an activated pro-
cess, while it is activated for p�6. In general, from Eq. �22�
one has �Ep

�m��0 for p�2+2m. The accomplishment of an
action requires a time �10�

tp
�m��Tf� � �wp��Ep/Tf��−1 =

2

p
�1 + exp��Ep

�m�/Tf�� ,

�23�

wp being the transition rates defined in Eq. �13�. The cross-
over time—namely, the characteristic time after which tex-
tures are removed—is given by the sum of the times required
for all the p−1 actions. It can be evaluated as

	p
cross�Tf� = �

m=1

p−1

tp
�m��Tf� . �24�

In the limit Tf →0 the sum is dominated by the process with
the largest activation energy

	p
cross�Tf � 0� = Sup�m=1,p−1�tp

�m��Tf� . �25�

The Sup in this equation is obtained for m=m* given by

m* = �1 for p � 10,

� p − 2

4
� for p � 10, � �26�

where �x� is the integer part of x. Then, in the low-T limit
one has

	p
cross�Tf � 0� = tp

m*
�Tf� . �27�

In conclusion, for p� pc no activated processes are required
and the system immediately enters the Ising-like phase or-
dering behavior. For p� pc, instead, the dynamics is initially
of the XY type until, at t�	p

cross�Tf�, there is a crossover to
the Ising-like nonequilibrium behavior.

The crossover can be appreciated in Figs. 12 and 13. The
former shows the behavior of LG�t� for p=6 and different
values of Tf. Here one observes initially the same behavior
as for Tf =0—namely, LG�t�� t1/4—i.e., a straight line in the
plot of LG�t� against t1/4 �right panel�. For larger times there
is a crossover to Ising behavior LG�t�� t1/2—namely, a
straight line in the plot of LG�t� versus t1/2 �left panel�. Al-
though the crossover is a quite smooth phenomenon, as can
be seen in Fig. 12, 	p

cross�Tf� given by Eq. �24�, represented
by thick segments across the lines, turns out to be of the
correct order of magnitude for all the temperatures consid-
ered.

In Fig. 13 we plot LG�t� for Tf =0.1 and different values of
p. One observes the same pattern of behavior of Fig. 12 with
a crossover from a power-law growth with z=4 to one with
z=2. The crossover time �24� grows with p, as expected.

IV. CONCLUSIONS

In this paper we have studied the phase-ordering kinetics
of the one-dimensional p-state clock model. We have shown
the existence of a critical value pc=4 separating two radi-

cally different dynamical behaviors. For p� pc the dynamics
is in all respects analogous to that of the Ising model with
p=2. Phase ordering proceeds by means of the formation and
subsequent growth of domains through interface diffusion
and annihilation. This similarity goes beyond the qualitative
level: we find the same exponent and scaling functions for
every p� pc and for all the one-time or two-time quantities
considered. This reflects a deeper similarity than what a
unique universality class, involving only the value of the
exponents, would imply. For p� pc the dynamics changes
dramatically, due to the relevant role played by textures.
While for p� pc textures are quickly removed by means of
nonactivated processes, for p� pc their removal can only be
realized through activated processes. For quenches to Tf =0,

FIG. 12. �Color online� LG�t� is plotted against t1/4 �left panel�
or versus t1/2 �right panel� for a quench of a system with p=6 and
different values of Tf. Vertical segments on the curves for different
Tf represent 	p

cross�Tf� obtained from Eq. �24� as discussed in the
text. For the smallest temperature 	p

cross�Tf� is outside the range of
times of the figure.

FIG. 13. �Color online� LG�t� is plotted against t1/4 �left panel�
or versus t1/2 �right panel� for a quench at Tf =0.1 and several values
of p� pc. Vertical segments on the curves for different p represent
	p

cross�Tf�. For p�25	p
cross�Tf� is outside the range of times of the

figure.
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activated processes are forbidden, and, therefore, textures re-
main in the system up to the longest times. Their peculiar
growth mechanisms characterize the dynamics, similarly to
what happens in the one-dimensional XY model, with the
notable feature of violation of dynamical scaling and the
anomalous growth with z=4 of the winding length Lw�t�. For
quenches to finite Tf, textures survive up to a characteristic
time 	p

cross�Tf� which can be rather long for small tempera-
tures or large p. A crossover phenomenon is then observed
from an initial dynamics of the XY type to a later Ising-like
behavior.

Our results are at odds with what is found in Ref. �6�
where an approximate analytical solution of the clock model
in arbitrary dimension is obtained, finding an analogous scal-
ing behavior for all p�� but with p-dependent scaling func-
tions. In the present one-dimensional case, instead, the situ-
ation is the opposite. There is not an analogous scaling
behavior for all values of p, but a qualitative difference oc-
curs crossing pc. In addition, when scaling holds—namely,
for p� pc—the scaling functions do not depend on p. We
believe, however, the behavior of the system considered in
this paper to be peculiar. Actually, the different dynamics
observed crossing pc is determined by the simultaneous pres-
ence of interfaces and textures. On the basis of the discussion
of Sec. I we expect a similar situation to be only realized in
N-component vectorial models with discrete states and N
=d+1, where extended defects without a core may exist. For
instance, it would be very interesting to study if a similar
pattern is observed in d=2 for a generalization of the clock
model where a three-component order parameter is only al-
lowed to point on a finite number p of directions. In addition,
we expect the remarkable feature of unique scaling functions
for different values of p to be peculiar to the one-
dimensional case. Considering the function G�r , t�, for in-
stance, the scaling function describes the spatial distribution
of domains and it is quite evident that in d�1 this depends
on p. Taking the case d=2, for simplicity, one has the usual
bicontinuous domain structure of domains and interfaces for
p=2, while for p�2 there is a different pattern with inter-
faces and vortices �11�. However, in the one-dimensional
case interfaces are pointlike objects for all values of p and
one does not expect relevant differences in their spatial dis-
tribution when p is changed.

Finally, it would be very interesting to study if a similar
pattern is observed in the one-dimensional clock model with
a conserved order parameter. Concerning the value of the
growth exponent z, which in the nonconserved case consid-
ered here effectively discriminate the Ising dynamics with
z=2 from the XY behavior with z=4, in the conserved case
one should observe a crossover from z=3 to z=6 �1,3�.
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APPENDIX

For the three-state clock model the correlation between
two spins at a certain time t can be written as

G�r,t� = 	
i
 j
 = �
n,n�=1,3

cos��i�n� − � j�n���

�Pi�n,t�Pi,j�n,t�n�,t� , �A1�

where r is the distance between i and j. Here n and �i �and
their relation� are defined in Eq. �2�, Pi�n , t� is the probability
to find the spin on site i in the state n at time t, and
Pi,j�n , t �n� , t� is the conditional probability to find the state
n� on site j provided that the state n is found in i. Isolating
the diagonal terms one has

G�r,t� = �
n=1,3

Pi�n,t�Pi,j�n,t�n,t�

−
1

2 �
n=1,3

Pi�n,t� �
n��n

Pi,j�n,t�n�,t� , �A2�

where we have used the value cos��i−� j�=−1/2 when �i

�� j. Since �n��nPi,j�n , t �n� , t�=1− Pi,j�n , t �n , t�, one has

G�r,t� = −
1

2 �
n=1,3

Pi�n,t� +
3

2 �
n=1,3

Pi�n,t�Pi,j�n,t�n,t�

= −
1

2
+

3

2 �
n=1,3

Pi�n,t�Pi,j�n,t�n,t� . �A3�

Let us turn now to the Potts model where a generic spin
on site i can be found in the states labeled with mi=1,2 ,3.
Following Ref. �5�, we define an auxiliary field �i�n� such
that �i�n�=1 if mi=n, where n is a reference state, and
�i�n�=0 otherwise. The correlation of the auxiliary field is
the single-phase correlation function of the Potts model and
can be written as

Gn�r,t� = 	�i�n�� j�n�
 = Pi�n,t�Pi,j�n,t�n,t� , �A4�

where the probabilities are defined analogously to those of
the clock model introduced above. Recognizing Gn�r , t� in
the last term of the right-hand side of Eq. �A3� one arrives at

G�r,t� = −
1

2
+

3

2 �
n=1,3

Gn�r,t� . �A5�

Because of the rotational symmetry, one has GP�r , t�
=Gn�r , t� for all values of n and then one recovers Eq. �15�.
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